Some Elements on Lévy Processes

Lucia Jarešová

Econometrics and Operational Research

Charles University
Faculty of Mathematics and Physics
Prague, Czech Republic

8th November 2010
Outline

1 Introduction
 Basic Definitions
 Poisson Process etc.
2 Basic Aspects on Lévy Processes
 Famous Processes
 Main Properties
 Examples
3 Structure of Lévy Processes
 Jump Process
 Decomposition of a Lévy Process
4 Some Sample Path Properties
 Recurrence and transience
5 Stock Model with Jumps
 Jump Diffusion
Some Elements on Lévy Processes

Outline

Introduction
- Basic Definitions
- Poisson Process etc.

Basic Aspects on Lévy Processes
- Famous Processes
- Main Properties
- Examples

Structure of Lévy Processes
- Jump Process
- Decomposition of a Lévy Process

Some Sample Path Properties
- Recurrence and transience

Stock Model with Jumps
- Jump Diffusion

Jean Bertoin
Some Elements on Lévy Processes, in Handbook of Statistics, Vol. 19
Elsevier Science
2001

Karel Janeček
Advanced Topics in Financial Mathematics
Study material

Paul Wilmott
Paul Wilmott on Quantitative Finance
Wiley
2006
Introduction
Lévy processes

= processes in continuous time with independent and stationary increments

- Important class of Markov processes.
- Natural examples of semimartingales for which stochastic calculus applies.
- Appeared in physics: problems in turbulence, laser cooling.
- Important role in mathematical finance (heavy tails).

Paul Pierre Lévy
(1886-1971)
Filtered Probability Space

\((\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, P)\)

Filtration \((\mathcal{F}_t)_{t \geq 0}\) fulfills the standard conditions:

- \(\mathcal{F}_s \subseteq \mathcal{F}_t\) for \(s \leq t\) (as times moves forward, we obtain more and more information).
- Filtration is right-continuous, i.e. \(\mathcal{F}_t = \mathcal{F}_{t+} = \bigcap_{\epsilon > 0} \mathcal{F}_{t+\epsilon}\).

\(X_t\) is an \(\mathcal{F}_t\)-adapted stochastic process, if \(\sigma(X_t) \subseteq \mathcal{F}_t, \forall t \geq 0\) (\(X_t\) is \(\mathcal{F}_t\)-measurable for each \(t\)).

Filtration models the flow of public information. Price processes are adapted to this filtration (i.e. the filtration contains the observed history of market variables).
Stopping Time (Markův čas)

Definition 1
Suppose a \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, P)\). A stopping time \(\tau\) is a random variable taking values in \([0, \infty]\) and satisfying

\[
[\tau \leq t] \in \mathcal{F}_t, \quad \forall t \geq 0.
\]

Properties: \([\tau = t] \in \mathcal{F}_t\), i.e. the decision to stop at time \(t\) is based on information available at time \(t\).

Definition 2
We have an adapted process \(X_t\) and a stopping time \(\tau\). The stopped process is defined as

\[
X_{t \wedge \tau} = \begin{cases}
X_t & t \leq \tau \\
X_\tau & t > \tau
\end{cases}
\]
Stopping Time

Examples:

Hitting time of a one-sided boundary by a Brownian motion

\[\tau_a := \inf\{ t \geq 0 : W_t = a \} \]
Poisson Process: Construction

\[\tau_1, \tau_2, \ldots \sim \text{Exp}(\lambda) \text{ exponentially i.i.d. random variables,} \]
i.e. \(f(t) = \lambda e^{-\lambda t}, \quad t \geq 0, \quad E\tau_i = 1/\lambda. \)

Let \(S_n \) be the time of the \(n \)-th jump

\[S_n = \sum_{k=1}^{n} \tau_k. \]

Poisson process with intensity \(\lambda \) is the number of jumps at or before time \(t \)

\[N_t = \sum_{i=1}^{\infty} I[S_i \leq t] \]

- \(N_t \) is right-continuous
- \(N_t \) is not predictable w.r.t. \(\mathcal{F}_t \), i.e. not \(\mathcal{F}_{t^-} \) measurable
Poisson Process: Basic Properties

Poisson process jumps are of size 1.

Lemma 3

The Poisson process N_t *with intensity* $\lambda > 0$ *has the Poisson distribution* $\text{Po}(\lambda t)$

$$
P[N_t = k] = \frac{(\lambda t)^k}{k!} e^{-\lambda t}, \quad k = 0, 1, \ldots
$$

Memorylessnes of the exponential distribution

\Rightarrow Poisson process is memoryless

For $t, s \geq 0$

$$
\mathcal{L}(N_{t+s} - N_s) = \mathcal{L}(N_t) = \text{Po}(\lambda t)
$$
Poisson Process: Basic Properties

Mean and variance of the Poisson process:

\[\mathbb{E} N_t = \lambda t \]
\[\text{Var}(N_t) = \lambda t \]

Theorem 4

The compensated Poisson process defined as

\[M_t = N_t - \lambda t \]

is a martingale.
Compound Poisson Process

... to allow the jump sizes to be random

\[\xi_1, \xi_2, \ldots \text{ i.i.d. with } \beta = \mathbb{E}\xi_i \text{ independent of Poisson process } N_t \]

Compound Poisson process

\[Y_t := \sum_{i=1}^{N_t} \xi_i, \quad t \geq 0. \]

The compound Poisson process is memoryless, increments are independent and

\[\mathcal{L}(Y_{t+s} - Y_s) = \mathcal{L}(Y_t). \]
Compound Poisson Process

Mean of the compound Poisson process:

\[
EY_t = \mathbb{E} \left[\sum_{i=1}^{N_t} \xi_i \right] = \sum_{k=0}^{\infty} \mathbb{E} \left[\sum_{i=1}^{k} \xi_i \mid N_t = k \right] P[N_t = k] = \\
= \mathbb{E}\xi_1 \sum_{k=0}^{\infty} k P[N_t = k] = \mathbb{E}\xi_1 EN_t = \beta\lambda t
\]

Theorem 5

The compensated compound Poisson process defined as

\[M_t = Y_t - \beta\lambda t \]

is a martingale.
Basic Aspects on Lévy Processes
Wiener Process

Definition 6
An \mathcal{F}_t-adapted stochastic process $X = (X_t, t \geq 0)$ with values in \mathbb{R} is said to be a \textit{Wiener process}, if $\forall s, t \geq 0$

1. $W_0 = 0$ almost surely.

2. \textbf{Independent increments:} $W_{t+s} - W_t$ is independent of \mathcal{F}_t.

3. \textbf{Normal increments:} $W_{t+s} - W_t \sim \mathcal{N}(0, s)$.

4. Sample paths are \textit{continuous}.
Poisson Process

Definition 7
An \mathcal{F}_t-adapted stochastic counting process $(N_t, t \geq 0)$ with values in \mathbb{N} is said to be a Poisson process, if $\forall s, t \geq 0$

1. $N_0 = 0$ almost surely.
2. Independent increments: $N_{t+s} - N_t$ is independent of \mathcal{F}_t.
3. Stationary increments: $N_{t+s} - N_t$ has the same distribution as N_s.
4. No counted occurrences are simultaneous.
Basic Aspects on Lévy Processes

Lévy Process

Definition 8
An \mathcal{F}_t-adapted stochastic process $X = (X_t, t \geq 0)$ with values in \mathbb{R}^d is said to be a Lévy process, if $\forall s, t \geq 0$

1. $X_0 = 0$ almost surely.
2. Independent increments: $X_{t+s} - X_t$ is independent of \mathcal{F}_t.
3. Stationary increments: $X_{t+s} - X_t$ has the same distribution as X_s.
4. Sample paths are right-continuous and possess left limits.
Càdlàg Process

= everywhere right continuous and has left limits everywhere

càdlàg: ”continu à droite, limite à gauche”

RCLL: ”right continuous with left limits”

corlol: ”continuous on (the) right, limit on (the) left”

Skorokhod space = the collection of càdlàg functions on a given domain.

- Lévy process is càdlàg.
- Continuous process is càdlàg.
Basic Aspects on Lévy Processes

Markov Property

From the properties of Lévy process we get immediately

- \(X_{t+s} \mid X_t = x\) is independent of \(\mathcal{F}_t\), \(s, t \geq 0\).
- \(\mathcal{L}(X_{t+s} \mid X_t = x) = \mathcal{L}(x + X_s), s, t \geq 0\).

Theorem 9

(Markov Property) Let \(\tau\) be an \((\mathcal{F}_t)\)-stopping time, \(\tau < \infty\) a.s.

- \(X_{\tau+t} \mid X_{\tau} = x\) is independent of \(\mathcal{F}_\tau\), \(t \geq 0\).
- \(\mathcal{L}(X_{\tau+t} \mid X_{\tau} = t) = \mathcal{L}(x + X_t), t \geq 0\).

Often applied to investigate distributions related to *first passage time* (čas prvního průchodu)

\(\tau_B := \inf\{t \geq 0 : X_t \in B\}\), \(B\) is a Borel set.

\(\Rightarrow \quad \tau_B\) is a stopping time.
Basic Aspects on Lévy Processes

Infinitely Divisibility

Elementary decomposition of a Process, $n \in \mathbb{N}$:

$$X_1 = X_{\frac{1}{n}} + \left(X_{\frac{2}{n}} - X_{\frac{1}{n}} \right) + \cdots + \left(X_{\frac{n}{n}} - X_{\frac{(n-1)}{n}} \right)$$

⇒ Distributions of a LP are infinitely divisible (can be expressed as the sum of n i.i.d. variables, $n \in \mathbb{N}$).

Characteristic function of an infinitely divisible variable X_1 can be expressed in the form

$$\mathbb{E} \left(e^{i\langle \lambda, X_1 \rangle} \right) = e^{-\Psi(\lambda)}, \quad \lambda \in \mathbb{R}^d,$$

where $\langle \cdot, \cdot \rangle$ is the scalar product and $\Psi : \mathbb{R}^d \to \mathbb{C}$ is a continuous function with $\Psi(0) = 0$ known as the characteristic exponent of X.

Law of the Whole Process

Making use of the independence, stationarity of increments and right-continuity of the sample paths we get

\[E \left(e^{i \langle \lambda, X_t \rangle} \right) = e^{-t \Psi(\lambda)}, \quad \lambda \in \mathbb{R}^d, \ t \geq 0. \]

\[\Rightarrow \text{the law of the Lévy process is completely determined by } \Psi. \]
Lévy-Khintchine formula

Theorem 10

A function $\Psi : \mathbb{R}^d \rightarrow \mathbb{C}$ is the characteristic exponent of an infinitely divisible distribution if and only if it can be expressed in the form

$$\Psi(\lambda) = -i\langle a, \lambda \rangle + \frac{1}{2} Q(\lambda) +$$

$$+ \int_{\mathbb{R}^d} \left(1 - e^{i\langle \lambda, x \rangle} + i\langle \lambda, x \rangle I_{[|x|<1]} \right) \Pi(dx),$$

where $a \in \mathbb{R}^d$, Q is a positive semi-definite quadratic form on \mathbb{R}^d, and Π a measure on $\mathbb{R}^d \setminus \{0\}$ with $\int (1 \wedge |x|^2) \Pi(dx) < \infty$ called Lévy measure.

Moreover, a, Q and Π are then uniquely determined by Ψ.
Lévy-Khintchine formula

Note: This formula gives the generic form of characteristic exponents.
⇒ Key to understanding the probabilistic structure of Lévy processes.

1D-version:
\[
E \left[e^{i\lambda X_1} \right] = e^{-\psi(\lambda)} = \\
= \exp \left(ia\lambda - \frac{1}{2} \sigma^2 \lambda^2 - \int_{\mathbb{R}} \left(1 - e^{i\lambda x} + i\lambda x |x| < 1 \right) \Pi(dx) \right)
\]

\[\psi(\lambda) = -ia\lambda + \frac{1}{2} \sigma^2 \lambda^2 + \int_{\mathbb{R}} \left(1 - e^{i\lambda x} + i\lambda x |x| < 1 \right) \Pi(dx)\]
Poisson Distribution

\(X \sim \text{Po}(c), \ c > 0: \)

\[
P(X = n) = \frac{c^n}{n!} e^{-c}
\]

Characteristic function:

\[
E \left[e^{i\lambda X} \right] = \sum_{n=0}^{\infty} e^{i\lambda n} \frac{c^n}{n!} e^{-c} = \exp \left(-c(1 - e^{i\lambda}) \right)
\]

Lévy measure: \(\Pi(dx) = c\delta_1(dx) \) (\(\delta_1 \) is the Dirac measure at 1)

Associated Lévy process: *Poisson process with intensity c*
Normal Distribution

\(X \sim N(0, 1) : \)

\[f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \]

Characteristic function:

\[
\mathbb{E} \left[e^{i\lambda X} \right] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{i\lambda x} e^{-\frac{x^2}{2}} = \exp \left(-\frac{\lambda^2}{2} \right)
\]

Lévy measure: \(\Pi(dx) = 0dx \)

Associated Lévy process: *Standard Brownian motion*
Cauchy Distribution

\(X \sim \text{Cauchy}: \)

\[f(x) = \frac{1}{\pi(1 + x^2)} \]

Characteristic function:

\[
E \left[e^{i\lambda X} \right] = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{e^{i\lambda x}}{1 + x^2} dx = \exp(-|\lambda|) = \\
= \exp \left(-\frac{1}{\pi} \int_{-\infty}^{\infty} (1 - e^{i\lambda x}) x^{-2} dx \right)
\]

Lévy measure: \(\Pi(dx) = \pi^{-1} x^{-2} dx \)

Associated Lévy process: *Standard Cauchy process*
Gamma Distribution

\[X \sim \Gamma(c, 1), \quad c > 0: \]

\[
f(x) = \frac{x^{c-1}e^{-x}}{\Gamma(c)}
\]

Characteristic function:

\[
E \left[e^{i\lambda X} \right] = \frac{1}{\Gamma(c)} \int_{-\infty}^{\infty} e^{i\lambda x} x^{c-1} e^{-x} \, dx = (1 - i\lambda)^{-c} = \\
= \exp \left(-c \int_{0}^{\infty} \left(1 - e^{i\lambda x} \right) x^{-1} e^{-x} \, dx \right)
\]

Lévy measure: \(\Pi(dx) = c 1_{[x>0]} x^{-1} e^{-x} \, dx \)

Associated Lévy process: *Gamma process with shape parameter c*
Stable Distributions

\[X \sim \text{SD}(\alpha, \beta, \gamma), \quad \alpha \in (0, 1) \cup (1, 2), \beta \in [-1, 1], \gamma > 0: \]
\(\alpha = 1 \) transform of Cauchy distribution, \(\alpha = 2 \) normal distribution

Characteristic function:
\[
E \left[e^{i\lambda X} \right] = \exp \left(-\gamma |\lambda|^{\alpha} (1 - i\beta \text{sgn}(\lambda) \tan(\pi \alpha/2)) \right)
\]

Lévy measure: \(\Pi(dx) = \begin{cases}
 c^+ |x|^{-\alpha-1} dx & x > 0 \\
 c^- |x|^{-\alpha-1} dx & x < 0
\end{cases} \),

where \(c^+ \) and \(c^- \) are two nonnegative real numbers such that
\(\beta = (c^+ - c^-)/(c^+ + c^-) \)

Associated Lévy process: *Stable Lévy process with index \(\alpha \) and skewness \(\beta \)*
Structure of Lévy Processes
Jumps in Lévy Process

Left-limit of X at time t:

$$X_{t-} = \lim_{s \to t-} X_s$$

(possible) jump:

$$\Delta X_t = X_t - X_{t-}$$

For any Borel set $\{0\} \neq B \subseteq \mathbb{R}^d$, write

$$N^B_t = \text{Card}\{s \in (0, t] : \Delta X_s \in B\}$$

for the number of jumps accomplished by X before time t that take values in B.
Structure of Lévy Processes

Jumps \rightarrow Poisson Process

Independence and stationarity of the increments of X

\downarrow

- N_t^B has independent and stationary increments
- sample paths of N_t^B are right-continuous and they increase by jumps of size 1

\downarrow

N_t^B is a Poisson process with intensity $\Lambda(B)$
Lévy measure

B_1, \ldots, B_n, \ldots is a countable partition of B (disjoint sets, union is B)

⇓

$N_t^{B_1}, \ldots, N_t^{B_n}, \ldots$ are independent Poisson processes with intensities $\Lambda(B_i), i = 1, \ldots, \infty$

$$N_t^B = N_t^{B_1} + \cdots + N_t^{B_n} + \ldots$$

is a Poisson process with intensity

$$\Lambda(B) = \Lambda(B_1) + \cdots + \Lambda(B_n) + \ldots$$

⇓

Λ is a Borel measure on $\mathbb{R}^d \setminus \{0\}$ that gives a finite mass to the complement of any neighbourhood of the origin.
Structure of the Jumps

Theorem 11

The jump process $\Delta X = (\Delta X_t, t \geq 0)$ of a Lévy process X is a Poisson point process valued in \mathbb{R}^d, whose characteristic measure is the Lévy measure Π.

This means that for every Borel set B at a positive distance from the origin, the counting process N^B is a Poisson process with intensity $\Pi(B)$, and to disjoint Borel sets correspond independent Poisson processes.
Ex.: Compound Poisson Process

Let Λ be a finite measure on \mathbb{R}^d that gives no mass to the origin.
Let $(\Delta_t, t \geq 0)$ be a Poisson point process with the characteristic finite measure Λ.

Compound Poisson process

$$Y_t = \sum_{0 \leq s \leq t} \Delta_s$$

is a right-continuous step process and by construction its jump process is $\Delta Y_t = \Delta_t$.

Y_t is a Lévy process.
Ex.: Compound Poisson Process

We compute the characteristic function

\[
E \left(e^{i \langle \lambda, Y_1 \rangle} \right) = E \left(\exp \left\{ i \sum_{0 \leq s \leq 1} \langle \lambda, \Delta_s \rangle \right\} \right) = \\
\exp \left\{ - \int_{\mathbb{R}^d} \left(1 - e^{i \langle \lambda, x \rangle} \right) \Lambda(dx) \right\}
\]

It is a special case of the Lévy-Khintchine formula.

Characteristic measure \(\Lambda \) of the jump process is the Lévy measure.
Structure of Lévy Processes

Decomposition of a Lévy Process

Probabilistic meaning of the LK-Formula

Decomposition of the characteristic exponent Ψ of the Lévy-Khintchine formula

$$\Psi = \Psi^{(0)} + \Psi^{(1)} + \Psi^{(2)} + \Psi^{(3)},$$

where

$$\Psi^{(0)}(\lambda) = -i \langle a, \lambda \rangle$$
$$\Psi^{(1)}(\lambda) = \frac{1}{2} Q(\lambda)$$
$$\Psi^{(2)}(\lambda) = \int_{\mathbb{R}^d} \left(1 - e^{i\langle \lambda, x \rangle} \right) I_{|x| \geq 1} \Pi(dx)$$
$$\Psi^{(3)}(\lambda) = \int_{\mathbb{R}^d} \left(1 - e^{i\langle \lambda, x \rangle} + i \langle \lambda, x \rangle \right) I_{|x| < 1} \Pi(dx)$$

Each $\Psi^{(i)}$ is a characteristic exponent of some Lévy process.
Structure of Lévy Processes

Decomposition of a Lévy Process

Continuous Part: $\psi^{(0)}$ and $\psi^{(1)}$

Constant drift

is a deterministic linear process with characteristic exponent

$$\psi^{(0)}(\lambda) = -i \langle a, \lambda \rangle$$

Brownian component

is a linear transform of a d-dimensional Brownian motion with characteristic exponent

$$\psi^{(1)}(\lambda) = \frac{1}{2} Q(\lambda)$$
Large Jumps: $\psi^{(2)}$

$$\psi^{(2)}(\lambda) = \int_{\mathbb{R}^d} \left(1 - e^{i\langle \lambda, x \rangle} \right) I_{|x| \geq 1} \Pi(dx)$$

is a characteristic exponent of a compound Poisson process with Lévy measure $I_{|x| \geq 1} \Pi(dx)$.
Some Elements on Lévy Processes

Outline
Introduction
Basic Definitions
Poisson Process etc.
Basic Aspects on Lévy Processes
Famous Processes
Main Properties
Examples
Structure of Lévy Processes
Jump Process
Decomposition of a Lévy Process

Small Jumps: $\psi^{(3)}$

$$
\psi^{(3)}(\lambda) = \int_{\mathbb{R}^d} \left(1 - e^{i\langle \lambda, x \rangle} + i \langle \lambda, x \rangle \right) I_{|x|<1} \Pi(dx)
$$

In the case when

$$
\int_{\mathbb{R}^d} |x| I_{|x|<1} \Pi(dx) < \infty,
$$

we can re-write

$$
\psi^{(3)}(\lambda) = i \langle \lambda, a' \rangle + \int_{\mathbb{R}^d} \left(1 - e^{i\langle \lambda, x \rangle} \right) I_{|x|<1} \Pi(dx)
$$

with $a' = \int_{\mathbb{R}^d} x I_{|x|<1} \Pi(dx)$.

Structure of Lévy Processes —— Decomposition of a Lévy Process
Structure of Lévy Processes

Small Jumps: $\psi^{(3)}$

We can consider a Poisson point process $\Delta^{(3)}$ with characteristic measure $I_{|x|<1}\Pi(dx)$.

The hypothesis $\int_{\mathbb{R}^d} |x| I_{|x|<1} \Pi(dx) < \infty$ ensures that the series $\sum_{0 \leq s \leq t} |\Delta_s^{(3)}|$ converges a.s. for every $t \geq 0$, and this enables us to set

$$Y_t^{(3)} = -a't + \sum_{0 \leq s \leq t} \Delta_s^{(3)}.$$

$Y_t^{(3)}$ is a Lévy process with characteristic exponent $\psi^{(3)}$.
Lévy-Itô Decomposition

General Lévy Process X can be decomposed as the sum of four independent Lévy processes:

$$X = Y^{(0)} + Y^{(1)} + Y^{(2)} + Y^{(3)},$$

where

- $Y^{(0)}$ is a constant drift.
- $Y^{(1)}$ is linear transform of a Brownian motion.
- $Y^{(2)}$ is a compound Poisson process with jumps of size greater than or equal to 1.
- $Y^{(3)}$ is a pure jump process with jumps of size less than 1, that is obtained as the limit of compensated compound Poisson processes.
Jump Diffusion Process

Structure of Lévy Processes

Decomposition of a Lévy Process

Jump Process

Decomposition of a Lévy Process

Jump Diffusion Process
Some Sample Path Properties
Some Sample Path Properties

Recurrence and transience

Definitions

X is a Lévy process with values in \mathbb{R}^d

X is \textit{recurrent} if

$$\liminf_{t \to \infty} |X_t| = 0 \text{ a.s.}$$

X is \textit{transient} if

$$\liminf_{t \to \infty} |X_t| = \infty \text{ a.s.}$$

The \textit{potential of a Borel set} $B \subseteq \mathbb{R}^d$ is the expected time spent by the Lévy process in B,

$$U(B) := \int_0^\infty P(X_t \in B)\,dt = \mathbb{E} \left(\int_0^\infty 1_{\{X_t \in B\}}\,dt \right)$$
Some Sample Path Properties

Recurrence and transience

Analytic Characterization

Theorem 12
For $\epsilon > 0$, let B_ϵ stand for the open ball in \mathbb{R}^d centered at the origin with radius ϵ.

If $U(B_\epsilon) < \infty$ for some $\epsilon > 0$, then the Lévy process is transient. Otherwise the Lévy process is recurrent.

Theorem 13
(Chung and Fuchs test) Let X be a real-valued Lévy process with finite mean $\mathbb{E}X_1 = \mu \in \mathbb{R}$.

Then X is transient if $\mu \neq 0$ and recurrent if $\mu = 0$.
Stock Model with Jumps
Simple Stock Price with Jumps

We assume the stock price follows the SDE

\[dS = \mu Sdt + \sigma SdW + (J - 1)Sdq \]

\(W \) is the Brownian motion
\(q \) is the Poisson process independent of \(W \)

\[dq = \begin{cases}
0 & \text{with probability } 1 - \lambda dt \\
1 & \text{with probability } \lambda dt
\end{cases} \]

When \(dq = 1 \), the process jumps from \(S \) to \(JS \).

The jump size \(J \) is random variable independent of the Brownian motion \(W \) and the Poisson process \(q \).
Jump Diffusion Models

+
 - capture a real phenomenon that is missing from the Black-Scholes model.

-
 - difficulty in parameter estimation
 - it is hard to find a numerical solution
 - impossibility of perfect risk-free hedging, only hedging "on average"
Some Elements on Lévy Processes

Outline
- Literature
- Introduction
 - Basic Definitions
 - Poisson Process etc.
- Basic Aspects on Lévy Processes
 - Famous Processes
 - Main Properties
 - Examples
- Structure of Lévy Processes
 - Jump Process
 - Decomposition of a Lévy Process
- Some Sample Path Properties
 - Recurrence and transience
- Stock Model with Jumps
 - Jump Diffusion

The End