Chapter II: Markov Jump Processes

Jakub Černý

Department of Probability and Mathematical Statistics

Stochastic Modelling in Economics and Finance

October 15, 2012
Contents

1 Introduction

2 Intensity Matrix and Kolmogorov Differential Equations

3 Stationary Distribution

4 Time Reversibility
Notation and Markov property

\[(\Omega, \mathcal{F}, \mathbb{P})\] \ldots probability space
\[E\] \ldots finite or countable state space
\[S_0, S_1, S_2, \ldots\] \ldots times of jumps, \(S_0 := 0\)
\[T_n = S_{n+1} - S_n\] \ldots holding times, \(n \in \mathbb{N}\)
\[Y_0, Y_1, Y_2 \ldots\] \ldots visited states from state space \(E\)

Definition (Markov Chain with Continuous Time)

The system of random variables \(\{X_t, t \geq 0\}\) defined on \((\Omega, \mathcal{F}, \mathbb{P})\) is called Markov chain with continuous time and countable (finite) state space (Markov jump process) \(E\) if

\[
\mathbb{P}(X_t = j | X_s = i, \ldots, X_{t_1} = i_1) = \mathbb{P}(X_t = j | X_s = i)
\]

for all \(j, i, i_1, \ldots, i_n \in E\) and \(0 < t_1 < \cdots < t_n < s < t\) where

\[
\mathbb{P}(X_s = i, X_{t_n} = i_n, \ldots, X_{t_1} = i_1) > 0.
\]
Basic Characteristics

Assuming that Markov jump process is time-homogenous, i.e.

$$\mathbb{P}(X_{s+t} = j | X_s = i) = \mathbb{P}(X_t = j | X_0 = i) = \mathbb{P}_i(X_t = j) = p_{ij}^t,$$

let us denote the transition semigroup by the family

$$\{p_{ij}^t, t \geq 0, \sum_{j \in E} p_{ij}^t = 1\} = \{P^t, t \geq 0\}.$$

Chapman-Kolmogorov equations are analogic to discrete time Markov chains

$$p_{ij}^{t+s} = \sum_{k \in E} p_{ik}^s p_{kj}^t$$

and in the matrix form $P^{t+s} = P^t P^s$ which can be also interpreted as usual matrix multiplication.
Example of Application in Insurance

- Dead
- Ill
- Healthy

States: S_0, S_1, S_2, S_3, S_4

Time Points: T_1, T_2, T_3, T_4

Transitions between states.
Absorption State

Two possible phenomena of the Markov jump process may occur. First, the process may be absorbed at some state, for eg. state i. It means that there exists a last finite jump time S_n. Then $T_j = \infty, j = n, n+1, \ldots$ and $Y_k = i, k = n, n+1, \ldots$
Explosion Time

Second, the jumps of the process may accumulate, i.e. the process explodes. Jump times of the process are defined as

\[S_1 = \inf\{t > 0, X_t \neq X_0\} \]
\[S_2 = \inf\{t > S_1, X_t \neq X_{S_1}\} \]

\[\vdots \]

\[S_n = \inf\{t > S_{n-1}, X_t \neq X_{S_{n-1}}\} \]

and jump times can be rewritten by holding times as

\[S_n = \sum_{k=1}^{n} T_k, \quad \xi = \sup S_n = \sum_{k=1}^{\infty} T_k, \]

Random variable \(\xi \) is called explosion time.
Example - Explosion Process

\begin{itemize}
 \item Y_2
 \item Y_1
 \item S_0
 \item S_1
 \item S_2, S_3
 \item S_4
 \item ξ
\end{itemize}
Intuition Matrix

Theorem

For every state $i \in E$ exists a limit

$$\lim_{h \to 0^+} \frac{1 - p_{ii}^h}{h} := \Lambda_i \leq \infty$$

and for every $i, j \in E$, $i \neq j$ exists a limit

$$\lim_{h \to 0^+} \frac{p_{ij}^h}{h} := \Lambda_{ij} < \infty$$

and for every $i \in E$ is

$$\sum_{i \neq j} \Lambda_{ij} \leq \Lambda_i.$$

Nonnegative numbers Λ_{ij} are called transition **intensities** from the state i to the state j, $\Lambda_{ii} = -\Lambda_i$, Λ_i is called total intensity. The matrix $\Lambda = \{\Lambda_{ij}, i, j \in E\}$ is called **intensity matrix**.
Intensity Matrix

When state space E is finite then

$$\Lambda_i = \sum_{i\neq j} \Lambda_{ij} \Rightarrow \sum_{j\in E} \Lambda_{ij} = 0.$$

If state space E is infinite then

$$\Lambda_i \geq \sum_{i\neq j} \Lambda_{ij}.$$

Theorem

If $\Lambda_i = 0$ then $p_{ii}^t = 1$. If $0 < \Lambda_i < \infty$ then the holding time in state i has exponential distribution with expected value equal $1/\Lambda_i$.

The following result is of gives a necessary and sufficient condition, known as **Reuter’s condition**, for a Markov jump process to be explosive (nontrivial application are birth-death processes).

Theorem

A Markov jump process is nonexplosive if and only if the only nonnegative bounded solution \(k = (k_i)_{i \in E} \) to the set of equations

\[
\Lambda k = k
\]

is \(k = 0 \).
Kolmogorov Differential Equations

Let \(\Lambda \) be an intensity matrix on \(E \), \(\Lambda_i < \infty \) and \(\{X_t, t \geq 0\} \) is the Markov jump process defined on \((\Omega, \mathcal{F}, \mathbb{P}) \), then \(E \times E \)-matrices \(P^t \) satisfy the **backward equation**, i.e.

\[
(p^t_{ij})' = \sum_{k \in E} \Lambda_{ik} p^t_{kj} = -\Lambda_i p^t_{ij} + \sum_{k \neq i} \Lambda_{ik} p^t_{kj}
\]

\[
(P^t)' = \Lambda P^t,
\]

and **forward equation**, i.e.

\[
(p^t_{ij})' = \sum_{k \in E} p^t_{ik} \Lambda_{kj} = -p^t_{ij} \Lambda_j + \sum_{k \neq i} p^t_{ik} \Lambda_{kj}
\]

\[
(P^t)' = P^t \Lambda,
\]

assuming that \(\frac{p^h_{ij}}{h} \to \Lambda_{ij} \) converges uniformly in \(i \).
Kolmogorov Differential Equations

Theorem

If E is finite and $\Lambda = \{\Lambda_{ij}, 0 \leq i, j \leq n\}$ is a matrix where $\Lambda_{ij} \geq 0$, $i \neq j$ and $\Lambda_i = \sum_{i \neq j} \Lambda_{ij}$. Then exists a unique solution of both Kolmogorov differential equations which satisfies the initial condition $P^0 = \mathbb{I}$. The solution in matrix form is

$$P^t = e^{\Lambda t}$$

where $e^{\Lambda t}$ is an exponential matrix function defined as

$$e^{\Lambda t} = \sum_{k=0}^{\infty} \frac{\Lambda^k t^k}{k!}$$
Example - Kolmogorov Differential Equations

Suppose that E has $p = 2$ states Y_1, Y_2 and intensities $\Lambda(Y_1), \Lambda(Y_2)$ are not zero. Then Λ has eigenvalues 0 and $\Lambda = -\Lambda(Y_1) - \Lambda(Y_2)$ with corresponding right eigenvectors $(1, 1)^T, (\Lambda(Y_1), -\Lambda(Y_2))$. Hence

$$\Lambda = \begin{pmatrix} -\Lambda(Y_1) & \Lambda(Y_1) \\ \Lambda(Y_2) & -\Lambda(Y_2) \end{pmatrix} = B \begin{pmatrix} 0 & 0 \\ 0 & \Lambda \end{pmatrix} B^{-1}, \quad B = \begin{pmatrix} 1 & \Lambda(Y_1) \\ 1 & -\Lambda(Y_2) \end{pmatrix}$$

using eigendecomposition.

$$P^t = e^{\Lambda t} = \sum_{n=0}^{\infty} \frac{t^n}{n!} B \begin{pmatrix} 0 & 0 \\ 0 & \Lambda^n \end{pmatrix} B^{-1} = B \begin{pmatrix} 0 & 0 \\ 0 & e^{\Lambda t} \end{pmatrix} B^{-1}$$

$$= \frac{1}{\Lambda(Y_1) + \Lambda(Y_2)} \begin{pmatrix} \Lambda(Y_2) + \Lambda(Y_1)e^{\Lambda t} & \Lambda(Y_1) - \Lambda(Y_1)e^{\Lambda t} \\ \Lambda(Y_2) - \Lambda(Y_2)e^{\Lambda t} & \Lambda(Y_1) + \Lambda(Y_2)e^{\Lambda t} \end{pmatrix}.$$
Forward and backward equations are quite limited utility even in cases when state space is finite (for eg. complex eigenvalues). One common application is to look for a stationary distribution.

Definition

Let \(\{X_t, t \geq 0\} \) be Markov jump process with transition matrix \(P^t \).

If vector \(\pi = \{\pi_j, j \geq 0\} \) satisfies

\[
\pi^T = \pi^T P^t
\]

is called *stationary measure* of the process \(\{X_t, t \geq 0\} \) on \(E \) due to \(\{P^t, t \geq 0\} \). If \(\pi \) is also probability distribution on \(E \) then it is called *stationary distribution*.
Classification of States

Let $\Lambda^* = \{ \Lambda^*_ij, i, j \in E \}$ be matrix with

$$\Lambda^*_ij = \begin{cases} \frac{\Lambda_{ij}}{\Lambda_i}, & \Lambda_i > 0 \\ 0, & \Lambda_i = 0 \end{cases}, i \neq j$$

$$\Lambda^*_{ii} = \begin{cases} 0, & \Lambda_i > 0 \\ 1, & \Lambda_i = 0 \end{cases}$$

and we know that jump times of $\{X_t, t \geq 0\}$ are given by the sequence S_0, S_1, \ldots. We define

$$Z_0 = X_0, Z_n = X_{S_n}, n = 1, 2, \ldots$$

It can be shown that $\{Z_n, n \in \mathbb{N}_0\}$ is discrete Markov chain with transition probabilities Λ^*_ij defined above.
Classification of States

Theorem

The following properties are equivalent

(i) \(\{Z_n, n \in \mathbb{N}_0\} \) is irreducible,
(ii) for any \(i, j \in E \) we have \(p_{ij}^t > 0 \) for some \(t > 0 \)
(iii) for any \(i, j \in E \) we have \(p_{ij}^t > 0 \) for all \(t > 0 \).

We define \(\{X_t, t \geq 0\} \) to be irreducible if one of the properties (i)-(iii) hold. Similarly it is seen that we can define \(i \) to be transient (reccurent) for \(\{X_t, t \geq 0\} \) if either (i) the set \(\{t : X_t = i\} \) is bounded (unbounded) \(\mathbb{P}_i \)-a.s. (ii) \(i \) is transient (reccurent) for \(\{Z_n, n \in \mathbb{N}_0\} \) or (iii) \(\mathbb{P}_i(\inf\{t > 0, X_t = i, \lim_{s \to t} X_s \neq i\}) < 1(= 1) \).
Suppose that \(\{X_t, t \geq 0\} \) is irreducible and recurrent on \(E \). Then there exists one, and up to a multiplicative factor only one, invariant measure \(\pi \). This has the property \(\pi_j > 0 \) for all \(j \) and can be found in either of the following ways:

(i) for some fixed but arbitrary state \(i \), \(\pi_j \) is the expected time spent in \(j \) between successive entrances to \(i \). That is, with \(\omega(i) = \inf\{t > 0, X_t = i, \lim_{s \uparrow t} X_s \neq i\} \)

\[
\pi_j = \mathbb{E}_i \int_0^{\omega(i)} \mathbb{I}(X_t = j) \, dt
\]

(ii) \(\pi_j = \mu_j / \Lambda_j \) where \(\mu \) is stationary for \(\{Z_n\} \)

(iii) as a solution of \(\pi \Lambda = 0 \).
Ergodicity

An irreducible recurrent process with the stationary measure having finite mass is called \textit{ergodic}, and

\textbf{Theorem}

An irreducible nonexplosive Markov jump process is ergodic if and only if exists a probability solution \(\pi \) \((\sum_{i \in E} \pi_i = 1, \pi_i \in [0,1]) \) to \(\pi \Lambda = 0 \). In that case \(\pi \) is the stationary distribution.

\textbf{Theorem}

If \(\{X_t, t \geq 0\} \) is ergodic and \(\pi \) is the stationary distribution, then \(p_{ij}^t \to \pi_j, t \to \infty \) for all states \(i, j \in E \).
Ergodicity

As in discrete time, time-average properties like

$$\frac{1}{T} \int_0^T f(X_t) \, dt \xrightarrow{a.s.} \pi(f) = E_\pi(f(X_t)) = \sum_{i \in E} \pi_i f(i)$$

hold under suitable conditions on f. It means that the time average converges to the spatial average if the process is ergodic.

Corollary

If $\{X_t, t \geq 0\}$ is irreducible recurrent but not ergodic (stationary measure does not have finite mass), then $p^t_{ij} \to 0$ for all states $i, j \in E$.
Time Reversibility

Time reversibility (or just reversibility) of a process means loosely that the process evolves in just the same way irrespective of whether time is read forward (as usual) or backward.

Definition (Reversibility)

Process \(\{X_t, t \in \mathbb{R}\} \) is time reversible if for finite dimensional distributions and for all \(t \) is

\[
(X_{t_1}, X_{t_2}, \ldots, X_{t_n}) \overset{D}{=} (X_{t-t_1}, X_{t-t_2}, \ldots, X_{t-t_n}),
\]

Lemma

If the process \(\{X_t, t \in \mathbb{R}\} \) is time reversible then it is also time stationary.
Theorem

Stationary Markov jump process \(\{X_t, t \in \mathbb{R}\} \) with intensity matrix \(\Lambda \) is time reversible if and only if exists probability distribution \(\pi \) on \(E \) satisfying

\[
\pi(x)\Lambda(x, y) = \pi(y)\Lambda(y, x), \quad x, y \in E.
\]

In this case \(\pi \) is stationary distribution.

Previous theorem is also called **detailed balance condition** because the flow between every two states is in balance. The term \(\pi(x)\Lambda(x, y) \) is the probability flow from \(x \) to \(y \).
In contrast to detailed balance condition the equilibrium equation $\pi \Lambda = 0$ gives the **condition of full balance**. More precisely, rewriting $\pi \Lambda = 0$

$$\sum_{x \neq y} \pi(x) \Lambda(x, y) = \sum_{x \neq y} \pi(y) \Lambda(y, x)$$

for all states.

This condition loosely means that everything that flows into some state also flows out of it. Left hand side is the inflow of the state x and right hand side is the outflow.

Thank you for your attention!

Jakub Černý