Motivation and applications

Knapsack problem

Values $a_1 = 4$, $a_2 = 6$, $a_3 = 7$, costs $c_1 = 4$, $c_2 = 5$, $c_3 = 11$, budget $b = 10$:

$$\text{max } 3 \sum_{i=1}^{3} c_i x_i$$

$$\text{s.t. } 3 \sum_{i=1}^{3} a_i x_i \leq 10,$$

$$x_i \in \{0, 1\}.$$

Consider $=$ instead of \leq, $0 \leq x_i \leq 1$ and rounding instead of $x_i \in \{0, 1\}$, heuristic (ratio c_i/a_i) ...
Scheduling to Minimize the Makespan

- i machines, j jobs,
- y - machine makespan,
- x_{ij} - assignment variable,
- t_{ij} - time necessary to process job j on machine i.

\[
\min \ y \\
\text{s.t. } \sum_{j=1}^{m} x_{ij} = 1, \ j = 1, \ldots, n, \\
\sum_{j=1}^{m} t_{ij} x_{ij} \leq y, \ i = 1, \ldots, m, \\
x_{ij} \in \{0, 1\}, \ y \geq 0.
\]

Lot Sizing Problem

- x_t - production at period t,
- y_t - on/off decision at period t,
- s_t - inventory at the end of period t (s_0 fixed),
- D_t - (predicted) expected demand at period t,
- p_i - unit production costs at period t,
- f_i - setup costs at period t,
- h_t - inventory costs at period t,
- M - a large constant.

\[
\min \ \sum_{t=1}^{T} (p_i x_t + f_i y_t + h_t s_t) \\
\text{s.t. } s_{t-1} + x_t - D_t = s_t, \ t = 1, \ldots, T, \\
x_t \leq M y_t, \\
x_t, s_t \geq 0, \ y_t \in [0, 1].
\]

ASS. Wagner-Whitin costs $p_{t+1} \leq p_t + h_t$.

Unit Commitment Problem

- $i = 1, \ldots, n$ units (power plants), $t = 1, \ldots, T$ periods,
- y_{it} - on/off decision for unit i at period t,
- x_{it} - production level for unit i at period t,
- D_t - (predicted) expected demand at period t,
- P_{min}, P_{max} - minimal/maximal production capacity of unit i,
- c_i - variable production costs,
- f_i - (fixed) start-up costs.

\[
\min \ \sum_{i=1}^{n} \sum_{t=1}^{T} (c_i x_{it} + f_i y_{it}) \\
\text{s.t. } \sum_{i=1}^{n} x_{it} \geq D_t, \ t = 1, \ldots, T, \\
P_{min} y_{it} \leq x_{it} \leq P_{max} y_{it}, \\
x_{it} \geq 0, \ y_{it} \in [0, 1].
\]
Sparse l_1 regression

- Y_i – dependent variable $i = 1, \ldots, n$
- X_i – explanatory (independent) variables $j = 1, \ldots, m$
- β_j – coefficients.

$$\min_{\beta} \sum_{i=1}^{n} \left| Y_i - \sum_{j=1}^{m} X_{ij} \beta_j \right|$$ \hspace{1cm} (5)

s.t. at most $\kappa < m$ coefficients are nonzero.

MILP reformulation

$$\min_{\beta, u, z} \sum_{i=1}^{n} u_i^+ + u_i^-
\text{s.t.} \quad u_i^+ - u_i^- = Y_i - \sum_{j=1}^{m} X_{ij} \beta_j,
- M z_j \leq \beta_j \leq M z_j,
\sum_{j=1}^{m} z_j \leq \kappa,
\begin{align*}
 &u_i^+ \geq 0, \quad u_i^- \geq 0, \quad z_j \in \{0, 1\},
\end{align*}$$ \hspace{1cm} (6)

Chance constrained problems – single random constraint

Let $f, g(\cdot, \xi) : \mathbb{R}^n \to \mathbb{R}$ be real functions, $X \subseteq \mathbb{R}^n$, ξ be a real random vector, $\varepsilon \in (0, 1)$ small:

$$\min_{x \in X} f(x)$$

s.t. $P(g(x, \xi) \leq 0) \geq 1 - \varepsilon.$

INTERPRETATION: for a given $x \in X$, the probability of ξ for which the random constraint is fulfilled must be at least $1 - \varepsilon$:

$$P(g(x, \xi) \leq 0) = P(\{\xi : g(x, \xi) \leq 0\}).$$

Example: Value at Risk (VaR).

Integer linear programming

$$\min c^T x$$ \hspace{1cm} (8)

$$Ax \geq b,$$ \hspace{1cm} (9)

$$x \in \mathbb{Z}_+^n.$$ \hspace{1cm} (10)

Assumption: all coefficients are integer (rational before multiplying by a proper constant).

Set of feasible solution and its relaxation

$$S = \{x \in \mathbb{Z}_+^n : A x \geq b\},$$ \hspace{1cm} (11)

$$P = \{x \in \mathbb{R}_+^n : A x \geq b\}.$$ \hspace{1cm} (12)

Obviously $S \subseteq P$. Not so trivial that $S \subseteq \text{conv}(S) \subseteq P.$
ILP – irrational data

Škoda (2010):

\[
\begin{align*}
\text{max } & \sqrt{2}x - y \\
\text{s.t. } & \sqrt{2}x - y \leq 0, \\
& x \geq 1, \\
& x, y \in \mathbb{N}.
\end{align*}
\]

(13)

The objective value is bounded (from above), but there is no optimal solution.

For any feasible solution with the objective value \(z = \sqrt{2}x^* - \lfloor \sqrt{2}x^* \rfloor\) we can construct a solution with a higher objective value...

ILP – irrational data

Let \(z = \sqrt{2}x^* - \lfloor \sqrt{2}x^* \rfloor\) be the optimal solution. Since \(-1 < z < 0\), we can find \(k \in \mathbb{N}\) such that \(kz < -1\) and \((k-1)z > -1\). By setting \(\epsilon = -1 - kz\) we get that

\[
\begin{align*}
\sqrt{2}kx^* - \lfloor \sqrt{2}kx^* \rfloor & = kz + k \lfloor \sqrt{2}x^* \rfloor - \lfloor \sqrt{2}kx^* \rfloor \\
& = -1 - \epsilon + k \lfloor \sqrt{2}x^* \rfloor - \lfloor \sqrt{2}kx^* \rfloor \\
& = k \lfloor \sqrt{2}x^* \rfloor - 1 - \epsilon - \lfloor \sqrt{2}kx^* \rfloor - 1 - \epsilon \\
& = -\epsilon > z.
\end{align*}
\]

(14)

\((k \lfloor \sqrt{2}x^* \rfloor - 1\) is integral)

Thus, we have obtained a solution with a higher objective value which is a contradiction.

Example

Consider set \(S\) given by

\[
\begin{align*}
7x_1 + 2x_2 & \geq 5, \\
7x_1 + x_2 & \leq 28, \\
-4x_1 + 14x_2 & \leq 35, \\
x_1, x_2 & \in \mathbb{Z}_+.
\end{align*}
\]

Set of feasible solutions, its relaxation and convex envelope
Formulation and properties

Integer linear programming problem

Problem

\[
\min c^T x : x \in S. \tag{15}
\]

is equivalent to

\[
\min c^T x : x \in \text{conv}(S). \tag{16}
\]

\(\text{conv}(S)\) is very difficult to construct – many constraints ("strong cuts") are necessary (there are some important exceptions).

LP-relaxation:

\[
\min c^T x : x \in P. \tag{17}
\]

Mixed-integer linear programming

Often both integer and continuous decision variables appear:

\[
\min c^T x + d^T y \\
\text{s.t.} \ Ax + By \geq b \\
x \in \mathbb{Z}^n, \ y \in \mathbb{R}^m.
\]

(WE DO NOT CONSIDER IN INTRODUCTION)

Formulation and properties

Basic algorithms

We consider:
- Cutting Plane Method
- Branch-and-Bound

There are methods which combine the previous alg., e.g. Branch-and-Cut (add cuts to reduce the problem for B&B).

Formulation and properties

Cutting plane method – Gomory cuts

1. Solve LP-relaxation using (primal or dual) SIMPLEX algorithm.
 - If the solution is integral – END, we have found an optimal solution,
 - otherwise continue with the next step.
2. Add a Gomory cut (...) and solve the resulting problem using DUAL SIMPLEX alg.
Cutting plane method

Example

\[
\begin{align*}
\min 4x_1 + 5x_2 & \quad (18) \\
x_1 + 4x_2 & \geq 5, \quad (19) \\
3x_1 + 2x_2 & \geq 7, \quad (20) \\
x_1, x_2 & \in \mathbb{Z}_+. \quad (21)
\end{align*}
\]

Dual simplex for LP-relaxation ...

After two iterations of the dual SIMPLEX algorithm ...

<table>
<thead>
<tr>
<th></th>
<th>4</th>
<th>5</th>
<th>0</th>
<th>0</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>x_2</td>
<td>8/10</td>
<td>0</td>
<td>1</td>
<td>-3/10</td>
<td>1/10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>x_1</td>
<td>18/10</td>
<td>1</td>
<td>0</td>
<td>2/10</td>
<td>-4/10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>112/10</td>
<td>0</td>
<td>0</td>
<td>-7/10</td>
<td>-11/10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gomory cuts

There is a row in simplex table, which corresponds to a non-integral solution \(x_i \) in the form:

\[
x_i + \sum_{j \in N} w_{ij}x_j = d_i, \quad (22)
\]

where \(N \) denotes the set of non-basic variables; \(d_i \) is non-integral. We denote

\[
w_{ij} = \lfloor w_{ij} \rfloor + f_{ij}, \quad (23)
\]

\[
d_i = \lfloor d_i \rfloor + f_i, \quad (24)
\]

i.e. \(0 \leq f_{ij}, f_i < 1 \).

\[
\sum_{j \in N} f_{ij}x_j \geq f_i, \quad (25)
\]

or rather \(-\sum_{j \in N} f_{ij}x_j + s = -f_i, \ s \geq 0 \).
Gomory cuts

General properties of cuts (including Gomory ones):

- Property 1: Current (non-integral) solution becomes infeasible (it is cut).
- Property 2: No feasible integral solution becomes infeasible (it is not cut).

We express the constraints in the form

\[x_i + \sum_{j \in N} \lfloor w_{ij} \rfloor x_j = \lfloor d_i \rfloor + f_i, \]
(26)

\[x_i + \sum_{j \in N} [w_{ij}] x_j - \lfloor d_i \rfloor = f_i - \sum_{j \in N} f_{ij} x_j, \]
(27)

Current solution \(x_i^* = 0 \) for \(j \in N \) and \(x_i^* = d_i \) is non-integral, i.e. \(0 < x_i^* - \lfloor d_i \rfloor < 1 \), thus

\[0 < x_i^* - \lfloor d_i \rfloor = f_i - \sum_{j \in N} f_{ij} x_j^* \]
(28)

and

\[\sum_{j \in N} f_{ij} x_j^* < f_i, \]
(29)

which is a contradiction with the Gomory cut.

Consider an arbitrary integral feasible solution and rewrite the constraint as

\[x_i + \sum_{j \in N} [w_{ij}] x_j - \lfloor d_i \rfloor = f_i - \sum_{j \in N} f_{ij} x_j, \]
(30)

Left-hand side (LS) is integral, thus right-hand side (RS) is integral. Moreover, \(f_i < 1 \) a \(\sum_{j \in N} f_{ij} x_j \geq 0 \), thus RS is strictly lower than 1 and at the same time it is integral, thus lower or equal to 0, i.e. we obtain Gomory cut

\[f_i - \sum_{j \in N} f_{ij} x_j \leq 0. \]
(31)

Thus each integral solution fulfills it.
Cutting plane method

Dantzig cuts

\[\sum_{j \in N} x_j \geq 1. \]
(32)

(Remind that non-basic variables are equal to zero.)

After two iterations of the dual SIMPLEX algorithm...

<table>
<thead>
<tr>
<th></th>
<th>4 (x_1)</th>
<th>5 (x_2)</th>
<th>0 (x_3)</th>
<th>0 (x_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 (x_2)</td>
<td>8/10</td>
<td>0</td>
<td>1</td>
<td>-3/10</td>
</tr>
<tr>
<td>4 (x_1)</td>
<td>18/10</td>
<td>1</td>
<td>0</td>
<td>2/10</td>
</tr>
<tr>
<td>112/10</td>
<td>0</td>
<td>0</td>
<td>-7/10</td>
<td>-11/10</td>
</tr>
</tbody>
</table>

For example, \(x_1 \) is not integral:

\[x_1 + \frac{2}{10}x_3 - \frac{4}{10}x_4 = \frac{18}{10}, \]
\[x_1 + (0 + \frac{2}{10})x_3 + (-1 + \frac{6}{10})x_4 = 1 + \frac{8}{10}. \]

Gomory cut:

\[\frac{2}{10}x_3 + \frac{6}{10}x_4 \geq \frac{8}{10}. \]

New simplex table

<table>
<thead>
<tr>
<th></th>
<th>4 (x_1)</th>
<th>5 (x_2)</th>
<th>0 (x_3)</th>
<th>0 (x_4)</th>
<th>0 (x_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 (x_2)</td>
<td>8/10</td>
<td>0</td>
<td>1</td>
<td>-3/10</td>
<td>1/10</td>
</tr>
<tr>
<td>4 (x_1)</td>
<td>18/10</td>
<td>1</td>
<td>0</td>
<td>2/10</td>
<td>-4/10</td>
</tr>
<tr>
<td>0 (x_5)</td>
<td>-8/10</td>
<td>0</td>
<td>0</td>
<td>-2/10</td>
<td>-6/10</td>
</tr>
<tr>
<td>112/10</td>
<td>0</td>
<td>0</td>
<td>-7/10</td>
<td>-11/10</td>
<td>0</td>
</tr>
</tbody>
</table>

Dual simplex alg. ... Gomory cut:

\[\frac{4}{6}x_3 + \frac{1}{6}x_5 \geq \frac{2}{3}. \]

Dual simplex alg. ... optimal solution (2, 1, 1, 1, 0, 0).