Chance constrained problems: reformulation using penalty functions and sample approximation technique

Martin Branda
Charles University in Prague
Faculty of Mathematics and Physics
Department of Probability and Mathematical Statistics

25th European Conference on Operational Research
8-11 July 2012, Vilnius
Contents

1. Stochastic programming formulations
2. Relations between formulations
3. Sample approximations using Monte-Carlo techniques
1. Stochastic programming formulations

2. Relations between formulations

3. Sample approximations using Monte-Carlo techniques
Stochastic programming formulations

1. Stochastic programming formulation

 - Program with a random factor
 - Chance constrained problem (CCP) ⇔ Problem with penalty objective (PPO) ⇔ Integrated chance constrained problem (ICC)

2. Sample approximation (S.A.)

 - S.A. CCP → S.A. PPO → S.A. ICC

3. Solution validation

 - Reliability check → Reliability check → Reliability check
Program with a random factor ξ

$$\min \{ f(x) : x \in X, g_i(x, \xi) \leq 0, \ i = 1, \ldots, k \},$$

where $g_i, i = 0, \ldots, k,$ are real functions on $\mathbb{R}^n \times \mathbb{R}^{n'}, X \subseteq \mathbb{R}^n$ and $\xi \in \mathbb{R}^{n'}$ is a realization of a n'-dimensional random vector defined on the probability space (Ω, \mathcal{F}, P).

If P is known, we can use chance constraints to deal with the random constraints...
Stochastic programming formulations

Chance constrained problem (CCP)

Chance constrained problem

\[
\psi_\epsilon = \min_{x \in X} f(x),
\]

s.t.

\[
P(g_{11}(x, \xi) \leq 0, \ldots, g_{1k_1}(x, \xi) \leq 0) \geq 1 - \epsilon_1, \\
\vdots \\
P(g_{m1}(x, \xi) \leq 0, \ldots, g_{mk_m}(x, \xi) \leq 0) \geq 1 - \epsilon_m,
\]

with optimal solution \(x_\epsilon\), where we denoted \(\epsilon = (\epsilon_1, \ldots, \epsilon_m)\) with levels \(\epsilon_j \in (0, 1)\). The formulation covers the joint \((k_1 > 1\text{ and } m = 1)\) as well as the individual \((k_j = 1\text{ and } m > 1)\) chance constrained problems as special cases.
In general,

- the feasible region is **not convex** even if the functions are convex,
- it is even not easy to check **feasibility** because it leads to computations of multivariate integrals.

Hence, we will try to reformulate the chance constrained problem using penalty functions.
Penalty functions $\vartheta_j : \mathbb{R}^m \rightarrow \mathbb{R}_+$, $j = 1, \ldots, m$, are continuous nondecreasing, equal to 0 on \mathbb{R}^m_- and positive otherwise, e.g.

$$\vartheta^1_p(u) = \sum_{i=1}^{k} ([u_i]^+)^p, \quad p \in \mathbb{N}$$

$$\vartheta^2(u) = \max_{1 \leq i \leq k} [u_i]^+,$$

$$= \min \left\{ t \geq 0 : u_i - t \leq 0, \quad i = 1, \ldots, k \right\}$$

where $u \in \mathbb{R}^m$. Let p_j denote the penalized constraints

$$p_j(x, \xi) = \vartheta_j(g_{j1}(x, \xi), \ldots, g_{jk_j}(x, \xi)), \forall j.$$
Penalty function problems

Problem with **penalties in the objective function**

\[
\varphi_N = \min_{x \in X} \left\{ f(x) + N \cdot \sum_{j=1}^{m} \mathbb{E}[p_j(x, \xi)] \right\}
\]

with an optimal solution \(x_N\). In Ermoliev et al. (2000) for \(\vartheta^{1,1}\) and \(m = 1\).

Problem with **generalized integrated chance constraints**

\[
\varphi_{L}^{\text{ICC}} = \min_{x \in X} \left\{ f(x) : \text{ s.t. } \mathbb{E}[p_j(x, \xi)] \leq L_j, j = 1, \ldots, m \right\}
\]

for some prescribed bounds \(L_j \geq 0\), \(L = (L_1, \ldots, L_m)^T\), with an optimal solution \(x_{L}^{\text{ICC}}\) (originally defined using \(u^2\), cf. Klein Haneveld (1986)).
Penalty function problems

Problem with **penalties in the objective function**

\[\varphi_N = \min_{x \in X} \left\{ f(x) + N \cdot \sum_{j=1}^{m} \mathbb{E}[p_j(x, \xi)] \right\} \]

with an optimal solution \(x_N \). In Ermoliev et al. (2000) for \(\vartheta^{1,1} \) and \(m = 1 \).

Problem with **generalized integrated chance constraints**

\[\varphi_{L}^{ICC} = \min_{x \in X} \left\{ f(x) : \text{s.t. } \mathbb{E}[p_j(x, \xi)] \leq L_j, j = 1, \ldots, m \right\} \]

for some prescribed bounds \(L_j \geq 0, \ L = (L_1, \ldots, L_m)' \), with an optimal solution \(x_{L}^{ICC} \) (originally defined using \(u^2 \), cf. Klein Haneveld (1986)).
Stochastic programming formulations

History and applications of the penalty approach in SP

- Prékopa (1973): **CPP and penalization**
- Ermoliev et al (2000): Managing exposure to **catastrophic risks** (asymptotic equivalence with particular penalty)
- Žampachová (2009): **Beam design** (reliability problem with partial differential equations - nonlinear - significant reduction of computational time)
- M.B. (2009, 2012A): **Value at Risk optimization** with transaction costs and integer allocations (general penalty functions and several CC)
- M.B (2011): **Blending problem** (asymptotic equivalence with generalized integrated chance constraints)
Contents

1 Stochastic programming formulations

2 Relations between formulations

3 Sample approximations using Monte-Carlo techniques
Relations between formulations

1. Stochastic programming formulation
 - Chance constrained problem (CCP)
 - Problem with penalty objective (PPO)
 - Integrated chance constrained problem (ICC)

2. Sample approximation (S.A.)
 - S.A. CCP
 - S.A. PPO
 - S.A. ICC

3. Solution validation
 - Reliability check
 - Reliability check
 - Reliability check
M.B. (2012A): Under the following assumptions, the **asymptotic equivalence of the CCP and the PPO problems** can be shown:

- **Continuity** of the constraints and the probabilistic functions.
- **Compactness** of the fixed set of feasible solutions.
- Existence of **integrable majorants**.
- Existence of a **permanently feasible solution**.

THEN for any prescribed $\epsilon \in (0, 1)^m$ there always exists N large enough so that minimization of the penalty objective generates optimal solutions x_N which also satisfy the chance constraints with the given ϵ.
Denote $\eta = \kappa/(2(1 + \kappa))$, and for arbitrary $N > 0$ and $\epsilon \in (0, 1)^m$ put

$$
\epsilon_j(x) = P(p_j(x, \xi) > 0), \ j = 1, \ldots, m,
$$

$$
\alpha_N(x) = N \cdot \sum_{j=1}^{m} \mathbb{E}[p_j(x, \xi)], \ \beta_\epsilon(x) = \epsilon_{\max}^{-\eta} \sum_{j=1}^{m} \mathbb{E}[p_j(x, \xi)],
$$

where $\epsilon_{\max} = \max_j \epsilon_j$ and $[1/N^{1/\eta}] = (1/N^{1/\eta}, \ldots, 1/N^{1/\eta})$. THEN bounds on the optimal values can be constructed:

$$
\varphi_{[1/N^{1/\eta}]}(x_N) - \beta_\epsilon(x_N)(x_\epsilon(x_N)) \leq \psi_\epsilon(x_N) \leq \varphi_N - \alpha_N(x_N),
$$

$$
\psi_\epsilon(x_N) + \alpha_N(x_N) \leq \varphi_N \leq \psi_{[1/N^{1/\eta}]} + \beta_{[1/N^{1/\eta}]}(x_{[1/N^{1/\eta}]}).
$$

with

$$
\lim_{N \to +\infty} \alpha_N(x_N) = \lim_{N \to +\infty} \epsilon_j(x_N) = \lim_{\epsilon_{\max} \to 0^+} \beta_\epsilon(x_\epsilon) = 0
$$

for any sequences of optimal solutions x_N and x_ϵ.

M. Branda (Charles University)
Relations between formulations

1. Stochastic program formulation
 - Chance constrained problem (CCP)
 - Problem with penalty objective (PPO)
 - Integrated chance constrained problem (ICC)

2. Sample approximation (S.A.)
 - S.A. CCP
 - S.A. PPO
 - S.A. ICC

3. Solution validation
 - Reliability check
M.B. (2011): Under the following assumptions, the asymptotic equivalence of the ICC and the PPO problems can be shown:

- **Continuity** of the constraints.
- **Compactness** of the fixed set of feasible solutions.
- Existence of **integrable majorants**.
- Existence of a **permanently feasible solution**.

THEN for any prescribed $L_j \geq 0$ there always exists N large enough so that minimization of the penalty function problem generates the optimal solutions x_N which also satisfy the integrated chance constraints with given $L = (L_1, \ldots, L_m)'$.
For arbitrary $\gamma \in (0, 1)$, $N > 0$ and $L_j \geq 0$ put

$$L_j(x) = \mathbb{E}[p_j(x, \xi)], \quad j = 1, \ldots, m,$$

$$\alpha_N(x) = N \cdot \sum_{j=1}^{m} \mathbb{E}[p_j(x, \xi)], \quad \beta_L(x) = \left(\sum_{j=1}^{m} L_j \right)^{\gamma-1} \sum_{j=1}^{m} \mathbb{E}[p_j(x, \xi)],$$

and let $\left[N^{1/(\gamma-1)}/m \right] = \left(N^{1/(\gamma-1)}/m, \ldots, N^{1/(\gamma-1)}/m \right)'$. THEN bounds on the optimal values can be constructed:

$$\varphi \left(\sum_{j=1}^{m} L_j(x_N) \right)^{\gamma-1} - \beta_L(x_N) \left(x_L(x_N) \right) \leq \varphi^{ICC}_L(x_N) \leq \varphi_N - \alpha_N(x_N),$$

$$\varphi^{ICC}_L(x_N) + \alpha_N(x_N) \leq \varphi_N \leq \varphi^{ICC}_{\left[N^{1/(\gamma-1)}/m \right]} + \beta_{\left[N^{1/(\gamma-1)}/m \right]} \left(x_{\left[N^{1/(\gamma-1)}/m \right]}^{ICC} \right),$$

with

$$\lim_{N \to +\infty} \alpha_N(x_N) = \lim_{N \to +\infty} L_j(x_N) = \lim_{L_{\text{max}} \to 0^+} \beta_L(x_L^{ICC}) = 0$$

for any sequences of the optimal solutions x_N and x_{L}^{ICC} where L_{max} denotes the maximal component of the vector L.\"
Contents

1. Stochastic programming formulations

2. Relations between formulations

3. Sample approximations using Monte-Carlo techniques
Sample approximations using Monte-Carlo techniques

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Stochastic programming formulation</td>
<td>Program with a random factor</td>
</tr>
<tr>
<td></td>
<td>Chance constrained problem (CCP)</td>
<td>⇔</td>
</tr>
<tr>
<td></td>
<td>Problem with penalty objective (PPO)</td>
<td>⇔</td>
</tr>
<tr>
<td></td>
<td>Integrated chance constrained problem (ICC)</td>
<td>⇔</td>
</tr>
<tr>
<td>2.</td>
<td>Sample approximation (S.A.)</td>
<td>S.A. CCP S.A. PPO S.A. ICC</td>
</tr>
<tr>
<td>3.</td>
<td>Solution validation</td>
<td>Reliability check Reliability check Reliability check</td>
</tr>
</tbody>
</table>
Let ξ^1, \ldots, ξ^S be an independent Monte Carlo sample of the random vector ξ.

By generalization of the results proposed by S. Ahmed, J. Luedtke, A. Shapiro, et al. (2008, 2009) ...
Sample approximations using Monte-Carlo techniques

Sample approximated chance constrained problem

...can be reformulated as a **large mixed-integer nonlinear program**:

\[
\begin{align*}
\min_{(x,u) \in X \times \{0,1\}^S} f(x) \\
\text{s.t.} & \\
& g_{1i}(x, \xi^s) - M(1 - u_{1s}) \leq 0, \ i = 1, \ldots, k_1, \ s = 1, \ldots, S \\
& \quad \vdots \\
& g_{mi}(x, \xi^s) - M(1 - u_{ms}) \leq 0, \ i = 1, \ldots, k_m, \ s = 1, \ldots, S, \\
& \frac{1}{S} \sum_{s=1}^{S} u_{1s} \geq 1 - \gamma_1, \\
& \quad \vdots \\
& \frac{1}{S} \sum_{s=1}^{S} u_{ms} \geq 1 - \gamma_m, \\
& u_{1s}, \ldots, u_{ms} \in \{0, 1\}, \ s = 1, \ldots, S,
\end{align*}
\]

where M is a large constant and $\gamma_j \in (0, 1)$.
M.B. (2012A): Let $\gamma_j > \varepsilon_j$ for all j, where γ_j are levels used in S.A. problems.

Sample size S necessary to obtain that a feasible solution of the original CC problem is also feasible for the sample approximation with a probability at least $1 - \delta$, $\delta \in (0, 1)$ small:

$$S \geq \frac{2}{\min_{j \in \{1, \ldots, m\}}(\gamma_j - \varepsilon_j)^2 / \varepsilon_j} \ln \frac{m}{\delta}.$$

(The estimate is based on Chernoff and Bonferroni inequalities.)
M.B. (2012A): Let $\gamma_j < \varepsilon_j$ for all j and $|X \setminus X_\varepsilon|$ denote the number of points from X which are not feasible for the original CC problem.

Sample size S necessary for that the feasible solutions of the sample approximated problems are feasible for the original CC problem with a high probability $1 - \delta$:

$$S \geq \frac{1}{2 \min_{j \in \{1, \ldots, m\}} (\gamma_j - \varepsilon_j)^2} \ln \frac{m |X \setminus X_\varepsilon|}{\delta}.$$

If we set $m = 1$, we get the same inequality as J. Luedtke, et al (2008).

(The estimate is based on Hoeffding and Bonferroni inequalities.) Extended for the **bounded infinite** and **mixed-integer** set of feasible solutions, see M.B. (2012A, 2012B)...
Mixed-integer CCP

\[
\min_{(x,y) \in \mathbb{Z}} f(x, y), \\
\text{s.t.} \\
P\left(g_{11}(x, y, \xi) \leq 0, \ldots, g_{1k_1}(x, y, \xi) \leq 0 \right) \geq 1 - \varepsilon_1, \\
\vdots \\
P\left(g_{m1}(x, y, \xi) \leq 0, \ldots, g_{mk_m}(x, y, \xi) \leq 0 \right) \geq 1 - \varepsilon_m,
\]

where \(\varepsilon_j \in (0, 1) \), \(X \subseteq \mathbb{R}^n \), \(Y \subseteq \mathbb{Z}^{n'} \) and
\[
Z = \{ (x, y) \in X \times Y : h_1(x, y) \leq 0, \ldots, h_k(x, y) \leq 0 \}, \\
g_{ji}(x, y, \xi) : \mathbb{R}^n \times \mathbb{Z}^{n'} \times \mathbb{R}^{n''} \to \mathbb{R}, i = 0, \ldots, k_j, j = 1, \ldots, m \text{ measurable in } \xi \text{ for all } x \in X \text{ and } y \in Y, \\
f(x, y) : \mathbb{R}^n \times \mathbb{R}^{n'} \to \mathbb{R}.
\]
M.B. (2012B): Let

1. $\gamma_j < \varepsilon_j$, i.e. that the levels of the sample approximated problem are more restrictive,

2. $Y \subseteq \mathbb{Z}^{n'}$ be finite,

3. $X(y) = \{x \in X : (x, y) \in Z\}$ be uniformly bounded for all $y \in Y$, i.e. $D = \sup_{y \in Y} \sup \{\|x - x'\|_{\infty} : x, x' \in X(y)\}$ be a finite diameter,

4. functions $G_j(x, y, \omega) = \max\{g_{j1}(x, y, \omega), \ldots, g_{jk_j}(x, y, \omega)\}$ be Lipschitz continuous in the real variable x, i.e. for arbitrary $y \in Y$ and $\xi \in \Xi$

$$|G_j(x, y, \omega) - G_j(x', y, \omega)| \leq L_j \|x - x'\|_{\infty}, \forall x, x' \in X(y),$$

for some $L_j > 0.$
Mixed-integer CCP

M.B. (2012B): It is possible to estimate the sample size S such that the feasible solutions of the relaxed sample-approximated problems are feasible for the original problem with a high probability $1 - \delta$:

$$S \geq \frac{1}{2 \min_j (\varepsilon_j - \gamma_j - \lambda_j)^2} \left(\ln \frac{m|Y|^2}{\delta} + \ln \left\lfloor \frac{1}{\lambda_{min}} \right\rfloor + n \ln \left\lfloor \frac{2L_{max}D}{\tau} \right\rfloor \right),$$

where $L_{max} = \max_j L_j$ and $\lambda_{min} = \min_j \lambda_j$, $\lambda_j \in (0, \varepsilon_j - \gamma_j)$, $\tau > 0$ small.

In M.B. (2012B) applied to stochastic vehicle routing problem.
Sample approximations using Monte-Carlo techniques

<table>
<thead>
<tr>
<th>1. Stochastic programming formulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program with a random factor</td>
</tr>
<tr>
<td>Chance constrained problem (CCP) ⇔ Problem with penalty objective (PPO) ⇔ Integrated chance constrained problem (ICC)</td>
</tr>
<tr>
<td>(\Rightarrow) (\downarrow) (\Rightarrow) (\downarrow) (\Rightarrow) (\downarrow)</td>
</tr>
</tbody>
</table>

| 2. Sample approximation (S.A.) |
| S.A. CCP | S.A. PPO | S.A. ICC |
| \(\downarrow\) | \(\downarrow\) | \(\downarrow\) |

| 3. Solution validation |
| Reliability check | Reliability check | Reliability check |
| \(\downarrow\) | \(\downarrow\) | \(\downarrow\) |
The set of feasible solutions of the original ICC problem

\[X_L = \left\{ x \in X : p_j(x) := \mathbb{E}[p_j(x, \xi)] \leq L_j, \ j = 1, \ldots, m \right\}, \]

the (relaxed) set of feasible solutions of the sample approximated problem, \(\tau_j \in \mathbb{R}, \ \tau = (\tau_1, \ldots, \tau_m) \),

\[X_{L+\tau}^S = \left\{ x \in X : p_j^S(x) := \frac{1}{S} \sum_{s=1}^{S} p_j(x, \xi^s) \leq L_j + \tau_j, \ j = 1, \ldots, m \right\}. \]
M.B. (2011): Let the moment generating function of \(p_j(x, \xi) - p_j(x) \) is finite and \(\tau_j > 0 \).

Estimated sample size \(S \) such that the feasible solutions of the original problem are feasible for the relaxed sample approximated problem with a high probability \(1 - \delta \):

\[
S \geq \frac{1}{\min_{j \in \{1, \ldots, m\}, x \in X} \frac{\tau_j^2}{2\sigma_{jx}^2}} \ln \frac{m|X|}{\delta},
\]

where \(\sigma_{jx}^2 = \text{Var}[p_j(x, \xi) - p_j(x)] < \infty \). If we set \(m = 1 \), we get similar inequality as W. Wang, S. Ahmed (2008).

(Based on Large Deviation Theory and Bonferroni inequality.) Extended for the \textit{bounded infinite set} of feasible solutions, see M.B. (2011).
Sample approximations using Monte-Carlo techniques

1. Stochastic programming formulation
 - Chance constrained problem (CCP) \iff Problem with penalty objective (PPO) \iff Integrated chance constrained problem (ICC)

2. Sample approximation (S.A.)
 - S.A. CCP \downarrow \ S.A. PPO \downarrow \ S.A. ICC

3. Solution validation
 - Reliability check \downarrow \ Reliability check \downarrow \ Reliability check

