Projective modules over universal enveloping algebras

September 27, 2011
Intro

- R is an associative ring with unit
- R-module means a right module over R
- A module P is said to be *projective* if it is isomorphic to a direct summand of $R_R^{(\kappa)}$
Intro

- R is an associative ring with unit
- R-module means a right module over R
- A module P is said to be projective if it is isomorphic to a direct summand of $R_{R}^{(\kappa)}$

Problem: For a (specified) ring give a classification of projective modules. By a theorem of Kaplansky every projective module is a direct sum of countably generated ones.
Projective modules are relevant in homological algebra, geometry and direct sum decompositions problems in module theory.

Theorem (Swan) Let X be a compact topological space. The category of real vector bundles on X is equivalent to the category of finitely generated projective modules over $\mathbb{C}[X]$.

Add (M) consists of direct summands of M for some \mathcal{A}.

Theorem (Dress) Let M be a finitely generated module over \mathbb{R}. The category $\text{Add}(M)$ is equivalent to the category of projective modules over $\text{End}_{\mathbb{R}}(M)$.
Why?

why not?
Projective modules are relevant in homological algebra, geometry and direct sum decompositions problems in module theory.

Theorem

Swan Let X be a compact topological space. The category of real vector bundles on X is equivalent to the category of finitely generated projective modules over $C(X)$.

$\text{Add}(M)$ consists of direct summands of $M^{(\kappa)}$ for some κ.

Theorem

Dress Let M be a finitely generated module over R. The category $\text{Add}(M)$ is equivalent to the category of projective modules over $\text{End}_R(M)$.
Noetherian setting

Typical situation over noetherian rings is that finitely generated projective modules are harder to classify than nonfinitely generated ones.
Noetherian setting

Typical situation over noetherian rings is that finitely generated projective modules are harder to classify than nonfinitely generated ones. Evolution of so called Serre’s problem (1955):

- In 1957 Serre proved that finitely generated projectives over $k[x_1, \ldots, x_n]$ are stably free.
- In 1963 Bass proved that nonfinitely generated projectives over $k[x_1, \ldots, x_n]$ are free.
- In 1976 Suslin and Quillen independently proved that all projective modules over $k[x_1, \ldots, x_n]$ are free.
Noetherian setting cont.

On the other hand sometimes there is a nice connection between properties of the ring R and the structure theory for nonfinitely generated projective modules. Let us discuss the case of an integral group ring of a finite group.
Noetherian setting cont.

On the other hand sometimes there is a nice connection between properties of the ring R and the structure theory for nonfinitely generated projective modules. Let us discuss the case of an integral group ring of a finite group.

Theorem

(Swan, Akasaki, Linnell) If G is a finite group then G is solvable if and only if every nonfinitely generated projective module over $\mathbb{Z}G$ is free.
Noetherian setting cont.

On the other hand sometimes there is a nice connection between properties of the ring R and the structure theory for nonfinitely generated projective modules. Let us discuss the case of an integral group ring of a finite group.

Theorem

(Swan, Akasaki, Linnell) If G is a finite group then G is solvable if and only if every nonfinitely generated projective module over $\mathbb{Z}G$ is free.

If P is a projective module $\text{Tr}(P) = \sum_{f: P \to R} f(P)$. This is an idempotent ideal in R (*trace ideal of P*) and $P\text{Tr}(P) = P$.

Theorem

(Bass) If R is a connected commutative noetherian ring then every nonfinitely generated projective module over R is free.
Fair-sized modules

We say that a ring R satisfies (*) if every chain of two-sided ideals $I_1 \supseteq I_2 \supseteq I_3 \supseteq \cdots$ such that $I_{k+1}I_k = I_{k+1}$ stabilizes.

If R is a (left and right) noetherian ring satisfying (*) then countably generated projective modules can be classified by pairs (I, \overline{P}), where I is an idempotent ideal of R and \overline{P} is a finitely generated projective module over R/I.

Theorem (Puninski) Let $n \not\equiv 0 \pmod{8}$ be a square-free integer. Then every torsion-free module over $\mathbb{Z}[\!\! [p] \!\!]$ is a direct sum of finitely generated modules if and only if $n \equiv 1 \pmod{8}$.
Fair-sized modules

We say that a ring R satisfies (*) if every chain of two-sided ideals $I_1 \supseteq I_2 \supseteq I_3 \supseteq \cdots$ such that $I_{k+1}I_k = I_{k+1}$ stabilizes. If R is a (left and right) noetherian ring satisfying (*) then countably generated projective modules can be classified by pairs (I, \overline{P}), where I is an idempotent ideal of R and \overline{P} is a finitely generated projective module over R/I.

- countably generated projective module P corresponds to $(I, P/PI)$, where I is the smallest ideal of P such that P/PI is finitely generated.
Fair-sized modules

We say that a ring R satisfies (*) if every chain of two-sided ideals $I_1 ⊇ I_2 ⊇ I_3 ⊇ \cdots$ such that $I_{k+1}I_k = I_{k+1}$ stabilizes.

If R is a (left and right) noetherian ring satisfying (*) then countably generated projective modules can be classified by pairs (I, \overline{P}), where I is an idempotent ideal of R and \overline{P} is a finitely generated projective module over R/I.

- Countably generated projective module P corresponds to $(I, P/PI)$, where I is the smallest ideal of P such that P/PI is finitely generated.
- $(0, P)$ corresponds to a finitely generated projective R-module P.
Fair-sized modules

We say that a ring R satisfies (*) if every chain of two-sided ideals $I_1 \supseteq I_2 \supseteq I_3 \supseteq \cdots$ such that $I_{k+1}I_k = I_{k+1}$ stabilizes. If R is a (left and right) noetherian ring satisfying (*) then countably generated projective modules can be classified by pairs (I, \overline{P}), where I is an idempotent ideal of R and \overline{P} is a finitely generated projective module over R/I.

- Countably generated projective module P corresponds to $(I, P/Pl)$, where I is the smallest ideal of P such that P/Pl is finitely generated.
- $(0, P)$ corresponds to a finitely generated projective R-module P
- $(R, 0)$ corresponds to $R_R^{(\omega)}$
Fair-sized modules

We say that a ring R satisfies (*) if every chain of two-sided ideals $I_1 \supseteq I_2 \supseteq I_3 \supseteq \cdots$ such that $I_{k+1}I_k = I_{k+1}$ stabilizes.

If R is a (left and right) noetherian ring satisfying (*) then countably generated projective modules can be classified by pairs (I, \overline{P}), where I is an idempotent ideal of R and \overline{P} is a finitely generated projective module over R/I.

- countably generated projective module P corresponds to $(I, P/PI)$, where I is the smallest ideal of P such that P/PI is finitely generated.
- $(0, P)$ corresponds to a finitely generated projective R-module P
- $(R, 0)$ corresponds to $R^{(\omega)}_R$
- (I, \overline{P}) are decomposable whenever $0 \neq I$.
Fair-sized modules

We say that a ring R satisfies (*) if every chain of two-sided ideals $I_1 \supseteq I_2 \supseteq I_3 \supseteq \cdots$ such that $I_{k+1} I_k = I_{k+1}$ stabilizes.

If R is a (left and right) noetherian ring satisfying (*) then countably generated projective modules can be classified by pairs (I, \overline{P}), where I is an idempotent ideal of R and \overline{P} is a finitely generated projective module over R/I.

- countably generated projective module P corresponds to $(I, P/PI)$, where I is the smallest ideal of P such that P/PI is finitely generated.
- $(0, P)$ corresponds to a finitely generated projective R-module P
- $(R, 0)$ corresponds to $R^{(\omega)}$
- (I, \overline{P}) are decomposable whenever $0 \neq I$.

Theorem

(Puninski) Let $n \neq 0$ be a square-free integer. Then every torsion-free module over $\mathbb{Z} [\sqrt{n}]$ is a direct sum of finitely generated modules if and only if $n \neq 1 \mod 8$.
Lie Algebras

Let k be a field, an algebra $(L, [\cdot, \cdot])$ is called a Lie algebra if

- $[\cdot, \cdot]$ is bilinear
- $[x, x] = 0$ for every $x \in L$
- $[[a, b], c] + [[b, c], a] + [[c, a], b] = 0$ for every a, b, c

A representation of L is a Lie algebra homomorphism of L to $gl_n(k)$

Any associative algebra give a Lie structure via $[a, b] := ab - ba$.

Define $L^{(1)} = L$, $L^{(2)} = [L, L], \ldots, L^{(i+1)} = [L^{(i)}, L^{(i)}], \ldots$

A Lie algebra L is said to be solvable if there exists $i \in \mathbb{N}$ such that $L^{(i)} = 0$.

A radical of a Lie algebra L is the greatest solvable ideal in L.

A Lie algebra L is called semisimple if has zero radical.

A Lie algebra L is called simple if $[L, L] \neq 0$ and there are no nontrivial ideals of L.
Basic structure theorems for Lie algebras

Theorem

(Cartan) If L is a finite dimensional semisimple Lie algebra over a field of characteristic zero, then $L = L_1 \oplus \cdots \oplus L_n$, where every L_i is an ideal of L which is a simple Lie algebra.

Theorem

(Levi) Let B be a finite-dimensional Lie algebra over a field of characteristic zero and let R be the radical of B. Then B contains a finite-dimensional semisimple subalgebra L such that $B = L \oplus R$.
Universal enveloping algebras

Let L be a Lie algebra with basis $\{x_1, \ldots, x_n\}$ over k. Let

$$[x_i, x_j] = \sum_{k=1}^{n} c_{i,j,k} x_k.$$

The algebra $U(L) = k\langle x_1, \ldots, x_n \rangle / \langle x_i x_j - x_j x_i - \sum_{k=1}^{n} c_{i,j,k} x_k \rangle$ is called the universal enveloping algebra of L.

- Monomials $x_1^{k_1} x_2^{k_2} \cdots x_n^{k_n}$ form a basis of $U(L)$, so L is contained in $U(L)$.
Universal enveloping algebras

Let L be a Lie algebra with basis $\{x_1, \ldots, x_n\}$ over k. Let

$$[x_i, x_j] = \sum_{k=1}^{n} c_{i,j,k} x_k.$$

The algebra $U(L) = k\langle x_1, \ldots, x_n \rangle / \langle x_i x_j - x_j x_i - \sum_{k=1}^{n} c_{i,j,k} x_k \rangle$ is called the universal enveloping algebra of L

- Monomials $x_1^{k_1} x_2^{k_2} \cdots x_n^{k_n}$ form a basis of $U(L)$, so L is contained in $U(L)$.

- If A is an associative k-algebra and $\varphi : L \to A$ a linear map such that $\varphi([a, b]) = \varphi(a)\varphi(b) - \varphi(b)\varphi(a)$ then there is a unique extension of φ to a homomorphism $\Phi : U(L) \to A$.

Universal enveloping algebras

Let \(L \) be a Lie algebra with basis \(\{ x_1, \ldots, x_n \} \) over \(k \). Let

\[
[x_i, x_j] = \sum_{k=1}^{n} c_{i,j,k} x_k .
\]

The algebra \(U(L) = k\langle x_1, \ldots, x_n \rangle / \langle x_i x_j - x_j x_i - \sum_{k=1}^{n} c_{i,j,k} x_k \rangle \) is called the universal enveloping algebra of \(L \).

- Monomials \(x_1^{k_1} x_2^{k_2} \cdots x_n^{k_n} \) form a basis of \(U(L) \), so \(L \) is contained in \(U(L) \).
- If \(A \) is an associative \(k \)-algebra and \(\varphi : L \rightarrow A \) a linear map such that \(\varphi([a, b]) = \varphi(a) \varphi(b) - \varphi(b) \varphi(a) \) then there is a unique extension of \(\varphi \) to a homomorphism \(\Phi : U(L) \rightarrow A \).
- The category of representations of \(L \) is equivalent to the category of finite-dimensional right \(U(L) \)-modules.
Universal enveloping algebras

Let L be a Lie algebra with basis $\{x_1, \ldots, x_n\}$ over k. Let

$$[x_i, x_j] = \sum_{k=1}^{n} c_{i,j,k} x_k.$$

The algebra $U(L) = k\langle x_1, \ldots, x_n \rangle / \langle x_i x_j - x_j x_i - \sum_{k=1}^{n} c_{i,j,k} x_k \rangle$ is called the universal enveloping algebra of L.

- Monomials $x_1^{k_1} x_2^{k_2} \cdots x_n^{k_n}$ form a basis of $U(L)$, so L is contained in $U(L)$.
- If A is an associative k-algebra and $\varphi : L \to A$ a linear map such that $\varphi([a, b]) = \varphi(a) \varphi(b) - \varphi(b) \varphi(a)$ then there is a unique extension of φ to a homomorphism $\Phi : U(L) \to A$.
- The category of representations of L is equivalent to the category of finite-dimensional right $U(L)$-modules.
- $U(L)$ is a noetherian domain.
Universal enveloping algebras

Let L be a Lie algebra with basis $\{x_1, \ldots, x_n\}$ over k. Let

$$[x_i, x_j] = \sum_{k=1}^{n} c_{i,j,k} x_k.$$

The algebra $U(L) = k\langle x_1, \ldots, x_n \rangle / \langle x_i x_j - x_j x_i - \sum_{k=1}^{n} c_{i,j,k} x_k \rangle$ is called the universal enveloping algebra of L

- Monomials $x_1^{k_1} x_2^{k_2} \cdots x_n^{k_n}$ form a basis of $U(L)$, so L is contained in $U(L)$.

- If A is an associative k-algebra and $\varphi : L \rightarrow A$ a linear map such that $\varphi([a, b]) = \varphi(a)\varphi(b) - \varphi(b)\varphi(a)$ then there is a unique extension of φ to a homomorphism $\Phi : U(L) \rightarrow A$.

- The category of representations of L is equivalent to the category of finite-dimensional right $U(L)$-modules.

- $U(L)$ is a noetherian domain.

- Krull dimension of $U(L)$ is at most $\dim_k(L)$.
Some results on finitely generated projectives

Theorem

Let L be a Lie algebra of finite dimension. Then

- (Quillen) Every finitely generated projective module over $U(L)$ is stably free.
Some results on finitely generated projectives

Theorem

Let L be a Lie algebra of finite dimension. Then

- (Quillen) Every finitely generated projective module over $U(L)$ is stably free.
- (Stafford) If P is a finitely generated projective module over $U(L)$ of rank bigger than $\dim_k(L)$, then P is free. In particular, $\text{Tr}(P) = U(L)$ for every nonzero finitely generated projective $U(L)$-module.
Some results on finitely generated projectives

Theorem

Let L be a Lie algebra of finite dimension. Then

- (Quillen) Every finitely generated projective module over $U(L)$ is stably free.

- (Stafford) If P is a finitely generated projective module over $U(L)$ of rank bigger than $\dim_k(L)$, then P is free. In particular, $\text{Tr}(P) = U(L)$ for every nonzero finitely generated projective $U(L)$-module.

- (Stafford) If $[L, L] \neq 0$ then $U(L)$ contains a right ideal which is stably free but not free.
Solvable case

Theorem

Let \(k \) be a field of characteristic 0 and let \(L \) be a solvable Lie algebra of finite dimension over \(k \). If \(I_1, I_2, \ldots \) is a sequence of ideals in \(U(L) \) such that \(I_{k+1} I_k = I_{k+1}, k \in \mathbb{N} \). Then either \(I_k = U(L), k \in \mathbb{N} \) or there exists \(l \) such that \(I_l = 0 \).
Solvable case

Theorem

Let k be a field of characteristic 0 and let L be a solvable Lie algebra of finite dimension over k. If I_1, I_2, \ldots is a sequence of ideals in $U(L)$ such that $I_{k+1}I_k = I_{k+1}$, $k \in \mathbb{N}$. Then either $I_k = U(L)$, $k \in \mathbb{N}$ or there exists l such that $I_l = 0$.

Corollary

If L is a solvable Lie algebra of finite dimension over a field of characteristic zero then every non-finitely generated projective $U(L)$-module is free.

If $[L, L] = 0$ we get the Bass’ result for $k[x_1, \ldots, x_n]$.
Simple case

Theorem

(Weyl) Let L be a semisimple Lie algebra of finite dimension over a field of characteristic zero. Then every $U(L)$-module of finite dimension is completely reducible. In particular, if I is an ideal of finite codimension over $U(L)$, then $U(L)/I$ is semisimple artinian.
Simple case

Theorem

(Weyl) Let L be a semisimple Lie algebra of finite dimension over a field of characteristic zero. Then every $U(L)$-module of finite dimension is completely reducible. In particular, if I is an ideal of finite codimension over $U(L)$, then $U(L)/I$ is semisimple artinian.

Corollary

(Kraft, Small, Wallach) If L is as above then every ideal in $U(L)$ of finite codimension is idempotent.

Put $R = U(sl_2(\mathbb{C}))$. For every k there is a simple R-module M_k of dimension k. Every $I_k = \text{Ann}(M_k)$ is an ideal of codimension k^2 therefore is idempotent. By a result of Whitehead every I_k is a trace ideal of a projective module which cannot contain a finitely generated direct summand.
Problems in $U(sl_2(\mathbb{C}))$

- One can show that fair-sized theory cannot work here. There exists a countably generated projective module P such that \(\{ I \subseteq U(sl_2(\mathbb{C})) \mid P/PI \text{ is finitely generated} \} \) has not the least element.
Problems in $U(\mathfrak{sl}_2(\mathbb{C}))$

- One can show that fair-sized theory cannot work here. There exists a countably generated projective module P such that $\{I \subseteq U(\mathfrak{sl}_2(\mathbb{C})) \mid P/PI$ is finitely generated$\}$ has not the least element.

- There are at least uncountably many countably generated projective $U(\mathfrak{sl}_2(\mathbb{C}))$-modules up to isomorphism.
Problems in $U(\mathfrak{sl}_2(\mathbb{C}))$

- One can show that fair-sized theory cannot work here. There exists a countably generated projective module P such that $\{I \subseteq U(\mathfrak{sl}_2(\mathbb{C})) \mid P/PI \text{ is finitely generated} \}$ has not the least element.

- There are at least uncountably many countably generated projective $U(\mathfrak{sl}_2(\mathbb{C}))$-modules up to isomorphism.

- Is every nonzero idempotent ideal in $U(\mathfrak{sl}_2(\mathbb{C}))$ of finite codimension?
Problems in $U(\mathfrak{sl}_2(\mathbb{C}))$

- One can show that fair-sized theory cannot work here. There exists a countably generated projective module P such that
 \[\{ I \subseteq U(\mathfrak{sl}_2(\mathbb{C})) \mid P/PI \text{ is finitely generated} \} \] has not the least element.

- There are at least uncountably many countably generated projective $U(\mathfrak{sl}_2(\mathbb{C}))$-modules up to isomorphism.

- Is every nonzero idempotent ideal in $U(\mathfrak{sl}_2(\mathbb{C}))$ of finite codimension?

- Is every indecomposable projective module over $U(\mathfrak{sl}_2(\mathbb{C}))$ finitely generated? (A similar question is posed in a book by Fuchs and Salce over commutative domains.)
Problems in $U(\mathfrak{sl}_2(\mathbb{C}))$

- One can show that fair-sized theory cannot work here. There exists a countably generated projective module P such that $\{I \subseteq U(\mathfrak{sl}_2(\mathbb{C})) \mid P/PI \text{ is finitely generated}\}$ has not the least element.

- There are at least uncountably many countably generated projective $U(\mathfrak{sl}_2(\mathbb{C}))$-modules up to isomorphism.

- Is every nonzero idempotent ideal in $U(\mathfrak{sl}_2(\mathbb{C}))$ of finite codimension?

- Is every indecomposable projective module over $U(\mathfrak{sl}_2(\mathbb{C}))$ finitely generated? (A similar question is posed in a book by Fuchs and Salce over commutative domains.)

- Let $R = U(\mathfrak{sl}_2(\mathbb{C}))$ and \hat{R} its completion in linear topology induced by ideals of finite codimension. Let P, Q be countably (finitely) generated projective R-modules such that $P \otimes_R \hat{R} \simeq Q \otimes_R \hat{R}$. Does it mean $P \simeq Q$?
Problems in $U(\mathfrak{sl}_2(\mathbb{C}))$

- One can show that fair-sized theory cannot work here. There exists a countably generated projective module P such that $\{I \subseteq U(\mathfrak{sl}_2(\mathbb{C})) \mid P/PI \text{ is finitely generated} \}$ has not the least element.

- There are at least uncountably many countably generated projective $U(\mathfrak{sl}_2(\mathbb{C}))$-modules up to isomorphism.

- Is every nonzero idempotent ideal in $U(\mathfrak{sl}_2(\mathbb{C}))$ of finite codimension?

- Is every indecomposable projective module over $U(\mathfrak{sl}_2(\mathbb{C}))$ finitely generated? (A similar question is posed in a book by Fuchs and Salce over commutative domains.)

- Let $R = U(\mathfrak{sl}_2(\mathbb{C}))$ and \hat{R} its completion in linear topology induced by ideals of finite codimension. Let P, Q be countably (finitely) generated projective R-modules such that $P \otimes_R \hat{R} \simeq Q \otimes_R \hat{R}$. Does it mean $P \simeq Q$?

- Is there a way how to classify projective modules over $U(\mathfrak{sl}_2(\mathbb{C}))$?
End.

Thanks for your attention.